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Abstract: The obtained form-factor for inelastic scattering considering energy losses is expressed as a 
function of plane-wave approximation, on the basis of nonrelativistic scattering of nucleons in nuclei at 
the high-energy distorted-wave approximation in three-dimensional form. By calculating the double 
differential cross section of scattering, the energy losses of scattered protons with incident energy of 800 
MeV were defined. The giant dipole and quadruple resonance with the vibration surface of nuclear 

Pb208 were investigated.  
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1. Introduction 

 
The increased interest to studies the structure of nuclei by elastic and Inelastic scattering 

of nucleons is due to the numerous precise experimental data on a number of nuclei at different 
energies and large transferred momentum [1-3]. By getting a simple and accurate analytical 
expression for the scattering amplitude of the processes, a lot of important information about the 
structure of nuclei can be drawn from these data [4-6].    
  

2. The proposed theory 
 
To study the properties of highly excited states of nuclei by inelastic scattering of 

protons, considering the energy loss we use the scattering amplitude obtained in analytical form 
by the method of distorted waves in [7].  

We write the differential cross section in the form 
 

                        
4

)(
4

12
)(

12
12

22

2
2

LLx

L
LM

LMi

f

i

fif

ГEE

Г

L
qF

J
J

k
k

d
d

+−++

+
=

Ω

σ
∑                              (1) 

                             
Resonant excitation is considered here in Breit – Wigner form, where the energy loss is equal to 
the energy difference between the incident and scattered particles fix EEE −= . 

The nuclear form factor  )(FLM q   obtained in [8] has the following form: 
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Function )(rφ , arising on account of the distortions in the incident and outgoing waves, has the 
form: 
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Explicit expressions of potential in the center of the nuclei - )0(U , the parameters a , b  

and  c , depending on the density of nucleon distribution in nuclei, as well as a parameter 2
0β  (the 

slope of the diffraction peak), which is a part of the amplitude of the free NN – interaction, are 
given in [8].  

To calculate the integral (2) we choose a coordinate system in which q↑↑Oz  and 
designating µ=rq ˆˆcos , the impulse transmitted to the core (considering energy loss of the 
incident proton) is written as:  

 

     ϑϑ cos2)2(cos2 2
1

2
12

1

2
22

fififififi EEEEmkkkk −+=−+==


k-kq                      (5) 

Angle of scattering 21 ϑϑϑ +=  and deflection angles of the incident ( 1ϑ ) and the 
scattered particles )( 2ϑ relatively oх -axis in three-dimensional coordinate system 
 (Fig.1) are related as follows: 
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After integrating over the angles, the form factor is reduced to one-dimensional integral 
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The final expression of the differential cross sections for inelastic scattering of nucleons 
on nuclei we write in the form:  
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  - is the cross-section of nucleon - nucleon scattering in nucleus. 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1  Impulses of incident ( ik ) and scattering ( fk ) particles in three- dimensional coordinate system  

           with the transfer impulse fi kkq −= .  
 
To study the dependence of the cross section on the final energies of the scattered 

particles, the general expression of the double differential cross section is written:  

    θ= θ1+ θ2 μ= cos(q,r) 
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    3. Application of the theory 
 

Using the quantum hydrodynamic model of the nucleus [8], we investigate the properties 
of highly excited states of nuclei in the energy region of giant resonances. 

In order to consider in the excited nucleus the connection of a giant resonance with the 
vibrations of the nuclear surface, we combine the low-energy collective degrees of freedom with 
the high-energy one. The interaction between these motions is very strong, so it can significantly 
affect the structure of the giant resonances [9]. Let’s present the proton density of the excited 
nucleus as the sum of the equilibrium proton density )(rpρ  and the density of fluctuations, 

responsible for the giant resonances )t,()( Gr
p rr ηρ  extending from the center to the surface, and 

vibrations of the nucleus surface )t,()( vib
p rr ηρ  as:  
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According to the collective model )t,(Gr rη  can be written as: 
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and the of fluctuations density on the surface of the nucleus we present in the form of an 
expansion in the collective coordinate   - )t(αλμ :  
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Values lA  are normalization factors which are determined from the normalization conditions: 
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  As shown in [3], the potential velocity is a solution of equation 
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which can be represented as an expansion  
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 Collective oscillations of protons density respectively neutrons lead to a harmonically 
varying deformation of proton substance near the initial spherical equilibrium shape ( 0Rr =′ )   
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Using condition  
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we find the relation between the coefficients )t(Sλµ  of the expansion the  potential of velocities 
and  coefficients )t(λµα ,  which define the shape of the density distribution of the nucleons on 
the surface of the nucleus  
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Nucleon density distribution in the ground state of the nucleus )(rρ  we choose in the 
form of the Fermi - functions: 
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To reveal the surface effect, the equilibrium density is expressed in the form of two terms 
[10]:                  
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where S  - a step function, 1=S  with 0Rr <  and 0=S  under 0Rr > , and δ′ -derivative of δ  - 
function. 

Low-energy spectra of spherical nuclei are often the  typical spectra of almost harmonic 
surface vibrations quadruple type [9]. Therefore, for the expression (21), limited by the term 

2=λ  for the transition density, describing the quadruple oscillations of the nuclear surface, we 
obtain: 
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and for the so-called mass parameter λB  in general form, we get  
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 At that the excitation energy is: 
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Here, the stiffness coefficient is determined by the expression 
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where σ -   coefficient of surface tension of the core [9].                      
Thus, after integrating (9) for the form factor responsible for the quadruple oscillations of 

the nuclear surface, we have 
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Then the form-factor responsible for the giant resonances takes the form  
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4. Results and discussions 
  
This theory has been applied to the inelastic scattering of protons with incident energy 

800 MeV on nucleus Pb208 . In this case for the nuclear radius and the thickness of the surface 
layer characterizing the distribution nucleons in the ground state, we used the values derived 
from the elastic scattering of electrons ( FmR 28,60 = , Fmz 314,0= ). 

Comparison of the obtained results for the double-section in the energy 
dependence of the scattered protons with the experimental [11] and theoretical data obtained by 
Glauber approximation method [12], at scattering angle 13=ϑ , are shown in Fig. 2.  

At this scattering angle the energy loss of incident protons is ~ 45 MeV. This means that 
at this angle of scattering and these energy losses of incident protons the giant dipole and 
quadruple resonances with energies and widths of excitation 18,131 =Ω  MeV and 3,21 =Г  
MeV; 18,212 =Ω  MeV and 1,42 =Г  MeV, as well as the vibration of the surface of the 
nucleus with energy - 09,42 =ω  MeV and width 23,02 ==λГ  MeV may appear in the nuclei. 
 

 

 

 

 

 

 

 

 
 Fig.2 Dependence of the double differential cross section at energy of incident protons 800 MeV,  
          scattering angle 13=ϑ  for  nuclear )',(208 ppPb on the energy of the scattered protons, solid  
         line-the obtained results, points - experimental data [9], and a bar line –  the theoretical  
         calculations obtained in [12].  
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The parameter characterizing the mean-square deformation of the excited nucleus is determined 
by the expression 
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for which at the parameter of rigidity 2242 =vibC MeV we get 21,0=β .  

As seen from Fig. 2, the calculated theoretical cross section correctly predicts the location 
of excitation in the nucleus.  

However, for all values of the energies of the scattered protons double differential cross 
section is somewhat underestimated. In addition, the value of the dynamic deformation when 
compared with obtained from the experiment is a little underestimated, too. Apparently, this is 
due to the fact that we used nuclear model which is still not quite perfect. 

Besides, the calculation of differential cross sections of giant dipole and quadruple 
excitations was held as well as the cross sections of the quadruple vibrations of the nuclear 
surface at small scattering angles. The results of calculations in comparison with experimental 
and theoretical data derived in the distorted-wave Born approximation (DWBA) [12], are shown 
in Fig. 3. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3  The dependence of the differential cross section on the scattering angle of protons in the  
            nucleus )',(208 ppPb  at 800=iE  MeV for the dipole and quadruple giant resonances, as well as  
            for quadruple vibration of the nuclear surface. Solid line - received results, points - experimental  
          data [7], bar-line - results calculated in DWBA [13]. 
   

As seen from this figure the curves obtained DWBA, and the results of the present work 
coincide. However, at certain scattering angles corresponding to maxima cross sections, some 
discrepancy appears. 
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5. Conclusion 
 
By the method of distorted waves in the analytical form the expression for the amplitude 

of inelastic scattering of nucleons by nuclei was obtained. Applying this theory of scattering for 
studying excited states of nuclei we assumed that the vibration of the nuclear surface is a 
consequence of the decay of giant multiple resonances arising in the center of the nucleus. This 
allowed expressing in terms of collective coordinates the fluctuations of density and their 
frequencies on the base of the collective model of the nucleus, the degrees of freedom the 
quadruple deformation of the surface of the nucleus, described by collective coordinates.  

By comparison of the calculated double differential cross sections with the experimental 
data at scattering angle of protons 13=ϑ  in the nucleus Pb208 , the losses of energy were 
defined.  

 The angular dependence of cross sections of highly excited giant dipole and quadruple 
excitations, as well as low-energy excitations with quadruple surface vibrations of the nucleus 
was studied. 

Analyzing the results we revealed that the expression obtained for the scattering 
amplitude was very sensitive to the nuclear parameters in the ground state, what’ll allow, 
investigating the important properties of excited nuclei applying more sophisticated nuclear 
models. 
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ИССЛЕДОВАНИЕ ГИГАНТСКИХ РЕЗОНАНСОВ В ЯДРАХ 
НЕУПРУГИМ РАССЕЯНИЕМ ПРОТОНОВ 

 
М.М. Мирабуталыбов 

 
Резюме: На основе нерелятивистской теории рассеяния протонов на ядрах в искаженно-волновом 
приближении полученный формфактор для неупругого рассеяния представлен как функционал 
формфактора плоско-волногого приближения.  Вычислено двойное дифференциальное сечение 
для рассеянных протонов с падающей энергией  800 МэВ. Исследованы гигантские дипольные и 
квадрупольные резонансы с вибрацией поверхности ядра . 
 
Ключевые слова: Ядерная реакция   800 МэВ, вибрация поверхности ядра, гигантские 
резонансы. 
 
 

PROTONLARIN NÜVƏLƏRDƏN QEY İR -ELAS İT İK  SƏ İP LMƏ İS LƏ 
NƏHƏNG REZONANSLARIN TƏD İQ İQ  

 
M.M. Mirabutalıbov 

 
Xülasə: Qeyri-relyativistik protonların nüvədən qeyri-elastiki səpilməsi üçün təhrif olunmuş dalğalar 
yaxınlaşmasında alınan formfaktor, müstəvi dalğalar yaxınlaşmasındakı formfaktorun funksialı şəklinə 
salınmışdır. Enerjisi 800 MeV olan protonların nüvədən səpilməsinin ikiqat diferensial effektiv kəsiyi 
hesablanmışdır.   atom nüvəsində nəhəng dipol və kvadrupol rezonanslar və nüvə səthinin 
vibrasiyası tədqiq edilmişdir. 
 
Açar sözlər:  Nüvə reaksiyası,  800 MeV, nüvə səthinin vibrasiyası, nəhəng rezonanslar. 
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